4.6 Article

A combination of cis-acting elements is required to activate the pro-α1(I) collagen promoter in tendon fibroblasts of transgenic mice

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 277, Issue 21, Pages 19019-19026

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M200125200

Keywords

-

Ask authors/readers for more resources

The genes encoding the two type I collagen chains are selectively activated in few cell types, including fibroblasts and osteoblasts. By generating transgenic mice, we have previously shown that the activity of the mouse pro-alpha1(I) promoter was controlled by separate cell-specific cis-acting elements. In particular, a sequence located between -3.2 and -2.3 kb was needed to induce expression of the reporter gene at high levels in tendon fibroblasts. In the present work, by using the same transgenic approach, we have identified two short elements in this sequence, named tendon-specific element (TSE) 1 and TSE2, that were necessary to direct reporter gene expression selectively in tendon fibroblasts. Gel shift assays showed that TSE1 and TSE2 bound proteins specifically present in nuclear extracts from tendon fibroblasts and that the sequence of TSE2 binding a tendon-specific protein corresponded to an E-box. Analysis of transgenic mice further indicated that TSE1 and TSE2 needed to cooperate not only with each other but also with other cis-acting elements of the proximal promoter to activate reporter gene expression in tendon fibroblasts. Similarly, it pointed out that the so-called osteoblast-specific element had to interact with downstream sequences to drive reporter gene expression in osteoblasts of transgenic mice. Thus, expression of the mouse pro-alpha1(I) collagen gene in tendon fibroblasts appears to be the result of a unique combination of different cis-acting elements, including TSE1 and TSE2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available