4.6 Letter

Moving-wall-driven flows in nanofluidic systems

Journal

LANGMUIR
Volume 18, Issue 11, Pages 4186-4190

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la025533v

Keywords

-

Ask authors/readers for more resources

We describe fluidic control in lipid nanotubes 50-150 nm in radius, conjugated with surface-immobilized unilamellar lipid bilayer vesicles (similar to5-25 mum in diameter). Transport in nanotubes was induced by continuously increasing the surface tension of one of the conjugated vesicles, for example, by ellipsoidal shape deformation using a pair of carbon microfibers controlled by micromanipulators as tweezers. The shape deformation resulted in a flow of membrane lipids toward the vesicle with the higher membrane tension; this lipid flow in turn moved the liquid column inside the nanotube through viscous coupling. Thus, micrometer-sized vesicles are used as a handle for controlling fluid flow inside nanometer-sized channels. We show transport and trapping of a single 30-nm-diameter carboxylate-modified latex particle inside a similar to100-nm-radius nanotube. Fluidic control in nanometer-sized channels using a moving wall provides pluglike liquid flows, offers a means for efficient routing and trapping of small molecules, polymers, and colloids, and offers new opportunities to study chemistry in confined spaces. Networks of nanotubes and vesicles might serve as a platform to build nanofluidic devices operating with single molecules and nanoparticles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available