4.7 Article

Time-resolved characterization of particle associated polycyclic aromatic hydrocarbons using a newly-developed sequential spot sampler with automated extraction and analysis

Journal

ATMOSPHERIC ENVIRONMENT
Volume 96, Issue -, Pages 125-134

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.atmosenv.2014.07.031

Keywords

Sequential spot sampler; Time-resolved chemical speciation; Ambient particulate matter; Polycyclic aromatic hydrocarbons

Funding

  1. NIH [1 RC3 ES019081-01]

Ask authors/readers for more resources

A versatile and compact sampling system, the Sequential Spot Sampler (S3) has been developed for pre-concentrated, time-resolved, dry collection of fine and ultrafine particles. Using a temperature-moderated laminar flow water condensation method, ambient particles as small as 6 nm are deposited within a dry, 1-mm diameter spot. Sequential samples are collected on a multiwell plate. Chemical analyses are laboratory-based, but automated. The sample preparation, extraction and chemical analysis steps are all handled through a commercially-available, needle-based autosampler coupled to a liquid chromatography system. This automation is enabled by the small deposition area of the collection. The entire sample is extracted into 50-100 mu L volume of solvent, providing quantifiable samples with small collected air volumes. A pair of S3 units was deployed in Stockton (CA) from November 2011 to February 2012. PM2.5 samples were collected every 12 h, and analyzed for polycyclic aromatic hydrocarbons (PAHs). In parallel, conventional filter samples were collected for 48 h and used to assess the new system's performance. An automated sample preparation and extraction was developed for samples collected using the S3. Collocated data from the two sequential spot samplers were highly correlated for all measured compounds, with a regression slope of 1.1 and r(2) = 0.9 for all measured concentrations. S3/filter ratios for the mean concentration of each individual PAH vary between 0.82 and 1.33, with the larger variability observed for the semivolatile components. Ratio for total PAH concentrations was 1.08. Total PAH concentrations showed similar temporal trend as ambient PM2.5 concentrations. Source apportionment analysis estimated a significant contribution of biomass burning to ambient PAH concentrations during winter. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available