4.7 Article

Urinary concentrating defect in rats given Shiga toxin: elevation in urinary AQP2 level associated with polyuria

Journal

LIFE SCIENCES
Volume 71, Issue 2, Pages 171-189

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0024-3205(02)01618-1

Keywords

Shiga toxin 1 (Stx1); Shiga toxin 2 (Stx2); aquaporin 2 (AQP2); renal tubular impairment; hemolytic uremic syndrome (HUS)

Ask authors/readers for more resources

Shiga toxin (Stx) plays a central role in the etiology of hemolytic uremic syndrome (HUS) associated with Stx-producing Escherichia coli infection. The deposition of Stx2 in the renal collecting duct epithelial cells of rats administered Stx2 intravenously has been demonstrated by immunohistochemistry, and these rats were shown to develop substantial morphological changes in the kidney tubules, associated with polyuria. Severe polyuria was observed as an early event with no other obvious sequelae after Stx administration, in parallel with elevated urinary level of aquaporin 2 (AQP2) water channel protein that was determined by a sandwich EIA assay. Immunoblotting revealed that Stx treatment markedly induced an elevation in urinary AQP2 level and reduction in AQP2 protein in the renal plasma membranes. Elevated urinary AQP2 level was a more sensitive marker to assess Stx-induced renal tubular damage than urinary beta2-microglobulin or N-acetyl-beta-D-glucosaminidase in rats. Stx2 caused more severe renal tubular impairment than Stx 1. Change in urinary AQP2 level by Stx 1 and Stx2 at non-lethal doses of 40 ng/kg and 10 ng/kg, respectively, was reversed at 7 days in association with recovery of urinary concentrating ability, suggesting that there is a causative link. (C) 2002 Elsevier Science Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available