4.6 Article

Human herpesvirus 6 immediate-early 1 protein is a sumoylated nuclear phosphoprotein colocalizing with promyelocytic leukemia protein-associated nuclear bodies

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 277, Issue 22, Pages 19679-19687

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M200836200

Keywords

-

Ask authors/readers for more resources

Immediate-early (IE) proteins are the first proteins expressed following viral entry and play a crucial role in the initiation of infection. We report the cloning and characterization of a full-length IE1 transcript and protein (IE1B) from human herpesvirus 6 (HHV-6) variant B. The IE1B transcript consists of five exons (3720 nucleotides), three of which are coding for the IE1 protein. The 1078-amino acid-long IE1B protein is 62% identical and 75% similar to the 941-amino acid IE1 from HHV-6 variant A. IE1B protein can be detected at 4 h post-infection (P.I.), and it is distributed as small intranuclear structures. The maximal number of IE1 bodies (similar to10-12/nucleus) is detected at 12 h P.I. after which the IE1 bodies condense into 1-3 larger entities by 24-48 h P.I. During infection the IE1B protein is phosphorylated on serine and threonine residues. IE1B undergoes further post-translational modification with its conjugation to the small ubiquitin-like modifier (SUMO-1) peptide. IE1B colocalizes with SUMO-1 and promyelocytic leukemia nuclear bodies during infection as well as in transfection experiments. Finally, IE1 from variant B is a weaker transactivator than IE1 from variant A, when assayed using heterologous promoters. Overall, the characterization of the HHV-6 IE1B protein presented highlights the similarity and divergence between IE1 from both variants and provides useful information pertaining to the early phase of infection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available