4.5 Article

Neuropathic pain is associated with alterations of nitric oxide synthase immunoreactivity and catalytic activity in dorsal root ganglia and spinal dorsal horn

Journal

BRAIN RESEARCH BULLETIN
Volume 58, Issue 2, Pages 161-171

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0361-9230(02)00761-X

Keywords

neuronal NOS; catalytic NOS activity; nerve ligation; rat

Categories

Funding

  1. NINDS NIH HHS [NS 32794, NS 40386] Funding Source: Medline

Ask authors/readers for more resources

Previous experiments have suggested that nitric oxide may play an important role in nociceptive transmission in the spinal cord. To assess the possible roles of neuronal nitric oxide synthase (nNOS) in spinal sensitization after nerve injury, we examined the distribution of nNOS immunoreactivity in dorsal root ganglia (DRGs) and dorsal horn of the corresponding spinal segments. NOS catalytic activity was also determined by monitoring the conversion of [(3)H]arginine to [(3)H]citrulline in the lumbar (L4-L6) spinal cord segments and DRGs in rats 21 days after unilateral loose ligation of the sciatic nerve. Behavioral signs of tactile and cold allodynia developed in the nerve-ligated rats within 1 week after surgery and lasted up to 21 days. Immunocytochemical staining revealed a significant increase (similar to6.7-fold) of nNOS-immunoreactive neurons and fibers in the DRGs L4-L6. No significant changes were detected in the number of nNOS-positive neurons in laminae I-II of the spinal segments L4-L6 ipsilateral to nerve ligation. However, an increased number of large stellate or elongated somata in deep laminae III-V of the L5 segment expressed high nNOS immunoreactivity. The alterations of NOS catalytic activity in the spinal segments L4-L6 and corresponding DRGs closely correlated with nNOS distribution detected by immunocytochemistry. No such changes were detected in the contralateral DRGs or spinal cord of sham-operated rats. The results indicate that marked alterations of nNOS in the DRG cells and in the spinal cord may contribute to spinal sensory processing as well as to the development of neuronal plasticity phenomena in the dorsal horn. (C) 2002 Elsevier Science Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available