4.0 Article

Optimizing HAPEX™ topography influences osteoblast response

Journal

TISSUE ENGINEERING
Volume 8, Issue 3, Pages 453-467

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/107632702760184718

Keywords

-

Ask authors/readers for more resources

HAPEX(TM) (hydroxyapatite-reinforeed polyethylene composite) is a second-generation orthopedic biomaterial designed as a bone analog material, which has found clinical success. The use of topography in cell engineering has been shown to affect cell attachment and subsequent response. Thus, by combining bioactivity and enhancing osteoblast response to the implant surface, improved tissue repair and implant life span may be achieved. In this study a primary human osteoblast-like cell model has been used to study the influence of surface topography and chemistry produced by three different production methods. Scanning electron microscopy, fluorescence microscopy, and confocal scanning laser microscopy have been used to study cell adhesion; tritiated thymidine uptake has been used to observe cell proliferation; and the reverse transcriptase-polymerase chain reaction and biochemical methods have been used to study phenotypic expression. Transmission electron microscopy has also been used to look at more long-term morphology. The results show that topography significantly influences cell response, and may be a means of enhancing bone apposition on HAPEX(TM).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available