4.7 Article

The impact of relative humidity on aerosol composition and evolution processes during wintertime in Beijing, China

Journal

ATMOSPHERIC ENVIRONMENT
Volume 77, Issue -, Pages 927-934

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.atmosenv.2013.06.019

Keywords

ACSM; Relative humidity; Aqueous-phase production; Organic aerosol; Wintertime; Beijing

Funding

  1. Chinese Academy of Sciences [XDB05020501]
  2. National Key Project of Basic Research [2013CB955801]
  3. National Natural Science Foundation of China [41175108]

Ask authors/readers for more resources

Non-refractory submicron aerosol (NR-PM1) species measured by an Aerodyne Aerosol Chemical Speciation Monitor (ACSM) along with collocated gaseous species are used to investigate the impacts of relative humidity (RH) on aerosol composition and evolution processes during wintertime in Beijing, China. Aerosol species exhibit strong, yet different RH dependence between low and high RH levels. At low RH levels (<50%), all aerosol species increase linearly as a function of RH, among which organics present the largest mass increase rate at 11.4 mu g m(-3)/10% RH. Because the particle liquid water predicted by E-AIM model is very low and the temperature is relatively constant, the enhancement of aerosol species is primarily due to the decrease of wind speed. While the rates of increase for most aerosol species are reduced at high RH levels (>50%), sulfate presents an even faster increasing rate, indicating the significant impact of liquid water on sulfate production. The RH dependence of organic aerosol (OA) components is also quite different. Among OA components, coal combustion OA (CCOA) presents the largest enhancement in both mass concentration and contribution as a function of RH. Our results elucidate the important roles of liquid water in aerosol processing at elevated RH levels, in particular affecting sulfate and CCOA via aqueous-phase reaction and gas-particle partitioning associated with water uptake, respectively. It is estimated that aqueous-phase processing can contribute more than 50% of secondary inorganic species production along with an increase of aerosol particle acidity during the fog periods. However, it appears not to significantly enhance secondary organic aerosol (SOA) formation and the oxidation degree of OA. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available