4.4 Article

Bound-to-continuum and two-phonon resonance quantum-cascade lasers for high duty cycle, high-temperature operation

Journal

IEEE JOURNAL OF QUANTUM ELECTRONICS
Volume 38, Issue 6, Pages 533-546

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JQE.2002.1005404

Keywords

intersubband; laser; mid-infrared

Ask authors/readers for more resources

Recent advances in quantum-cascade (QC) laser active-region design are reviewed. Based on a rate equation model of the active region, we show why new gain regions based on a two-phonon resonance or a bound-to-continuum transition exhibit significantly better performance than the traditional design based on a three-quantum-well active region. Threshold current densities as low as 3 kA/cm(2) at T = 300 K, operation with a peak power of 90 mW at 425 K, single-mode high-power operation up to temperatures above 330 K at lambda approximate to 16 mum and continuous wave operation up to T = 311 K are demonstrated. QC lasers able to operate at high duty cycles (50%) on a Peltier cooler were used in a demonstration of a 300-MHz free-space optical link between two buildings separated by 350 m.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available