4.7 Article

PM2.5 source profiles for black and organic carbon emission inventories

Journal

ATMOSPHERIC ENVIRONMENT
Volume 45, Issue 31, Pages 5407-5414

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.atmosenv.2011.07.011

Keywords

Source profile; Emission inventory; PM2.5; Black carbon; Elemental carbon; Organic carbon; Climate

Funding

  1. California Air Resources Board (ARB) [04-307]
  2. Strategic Environmental Research and Development Program (SERDP) [WP-1336]

Ask authors/readers for more resources

Emission inventories for black or elemental (BC or EC) and organic (OC) carbon can be derived by multiplying PM2.5 emission estimates by mass fractions of these species in representative source profiles. This study examines the variability of source profiles and its effect on EC emission estimates. An examination of available profiles shows that EC and OC ranged from 6-13% and 35-40% for agricultural burning, 4-33% and 22-68% for residential wood combustion, 6-38% and 24-75% for on-road gasoline vehicles, and 33-74% and 20-47% for on-road heavy-duty diesel vehicles, respectively. Source profiles from the U.S. EPA SPECIATE data base were applied to PM2.5 emissions from the U.S. EPA National Emissions Inventory for 2005. The total estimated EC emissions of 432 Gg yr(-1) was apportioned as 42.5% from biomass burning, 35.4% from non-road mobile sources, 15% from on-road mobile sources, 5.4% from fossil fuel (e.g., coal, oil, and natural gas) combustion in stationary sources, 1% from other stationary industrial sources, and 0.5% from fugitive dust. Considering the variability in available source profiles, BC emission estimates for major sources such as open fires and non-road diesels ranged from 42 to 133 (a factor of 3) and 25 to 100 (a factor of 4) Gg yr(-1), respectively. The choice of source profiles can be a major source of uncertainty in national and global BC/EC emission inventories. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available