4.4 Article

Undrained monotonic and cyclic shear behaviour of sand under low and high confining stresses

Journal

SOILS AND FOUNDATIONS
Volume 42, Issue 3, Pages 63-76

Publisher

JAPANESE GEOTECHNICAL SOC
DOI: 10.3208/sandf.42.3_63

Keywords

compression; cyclic shear; high confining pressure; liquefaction; monotonic shear; particle breakage; sand; triaxial test; undrained

Ask authors/readers for more resources

Monotonic and cyclic loading tests have been carried out on a silica sand over a wide range of stresses in order to compare non-crushing and crushing behaviour. Samples were sieved at several stages of testing to theoretically determine the increase in particle surface area and hence degree of crushing. Undrained shear behaviour was compared for crushing and non-crushing regions above 3 MPa. Samples consolidated to 0.1 MPa demonstrated strong dilative behaviour, while above the yield stress of 3 MPa dilation was suppressed and considerable particle crushing occurred. Shearing caused a marked increase in particle crushing particularly after the phase transformation point. Crushing at the steady state was similar for isotropic and anisotropically consolidated sands. At high confining pressures the cyclic strength curves were similar to those for loose sands except for confining pressure dependency due to particle crushing. For low confining stresses cyclic strength increased with initial stress ratio, while for high confining stresses it decreased with initial shear stress ratio. In the cyclic tests there was no significant crushing for 0.1 MPa. Crushing was seen to increase rapidly after the phase transformation point, where high strains developed and where particle rotation and translation contributed to the crushing process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available