4.4 Article

Regulation of Salmonella enterica serovar typhimurium mntH transcription by H2O2, Fe2+, and Mn2+

Journal

JOURNAL OF BACTERIOLOGY
Volume 184, Issue 12, Pages 3151-3158

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.184.12.3151-3158.2002

Keywords

-

Categories

Funding

  1. NIGMS NIH HHS [R01 GM061748, GM61748] Funding Source: Medline

Ask authors/readers for more resources

MntH, a bacterial homolog of mammalian natural resistance associated macrophage protein 1 (Nramp1), is a primary transporter for Mn2+ influx in Salmonella enterica serovar Typhimurium and Escherichia coli. S. enterica serovar Typhimurium MntH contributes to H2O2 resistance and is important for full virulence. Consistent with its phenotype and function, mntH is regulated at the transcriptional level by both H2O2 and substrate cation. We have now identified three trans-acting regulatory factors and the three corresponding cis-acting mntH promoter motifs that mediate this regulation. In the presence of hydrogen peroxide, mntH is activated by OxyR, acting through an OxyR-binding motif centered just upstream of the likely -35 RNA polymerase-binding site. In the presence of Fe2+, mntH is repressed primarily by Fur, acting through a Fur-binding motif overlapping the -35 region. In the presence of Mn2+, mntH is repressed primarily by the Salmonella equivalent of E. coli b0817, a distant homolog of the Bacillus subtilis manganese transport repressor, MntR, acting through an inverted-repeat motif located between the likely -10 polymerase binding site and the ribosome binding site. E. coli b0817 was recently shown to bind the identical inverted-repeat motif in the E. coli mntH promoter and hence has been renamed MntR (S.I. Patzer and K. Hantke, J. Bacteriol. 183:4806-4813, 2001). Using Deltafur, DeltamntR, and Deltafur DeltamntR mutant strains as well as mutations in the Fur- and MntR-binding motif elements, we found that Fe2+ can also mediate repression through the Mn2+ repressor MntR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available