4.3 Article

Environmental changes in an alpine lake (Gossenkollesee, Austria) over the last two centuries the influence of air temperature on biological parameters

Journal

JOURNAL OF PALEOLIMNOLOGY
Volume 28, Issue 1, Pages 147-160

Publisher

SPRINGER
DOI: 10.1023/A:1020332220870

Keywords

climate change; palaeolimnology; lake sediments; diatoms; chrysophytes; chironomids; cladocera; pigments

Ask authors/readers for more resources

Changes in microfossils (diatoms, chrysophytes, chironomids and cladocera remains), geochemistry and deposition of atmospheric pollutants have been investigated in the sediment records of the alpine lake Gossenkollesee ( Tyrol, Austria) spanning the last two centuries. The sediment records were compared with seasonal and annual air temperature trends calculated for the elevation (2417 m a. s. l.) and the geographical position (47degrees13'46N, 11degrees00'51E) of the lake, and with precipitation records available since 1866 from Innsbruck. Temperature trends followed a 20 30 year oscillation between cold and warm periods. Regarding long-term changes, temperature trends showed a U-shaped trend between 1780 and 1950, followed by a steep increase since 1975. Physical, geochemical, and organic parameters were not controlled by air temperature. Among the biological records only diatoms and chrysophytes reacted to air temperature changes: the relative abundance of planktonic diatoms increased during warm periods and changes in mean annual alpine air temperature explained 36.5% of their variation. The relation between abundance of seasonal stomatocyst types and air temperature varied on two different time scales: while summer stomatocysts were influenced by short term temperature fluctuations, the autumn stomatocysts were affected only by the long term changes. Other biological parameters exhibited a constant species composition ( chironomids, pigments) or changes were small and independent of temperature ( cladocera). Spheroidal carbonaceous fly-ash particles, and trends in Pb and Cr indicated increasing deposition of atmospheric pollutants but had no detectable effects on the biological parameters either. In respect to temperature variations over the last 200 years, this alpine lake is much less sensitive than expected and has thus to be regarded as a well buffered site. However, temperature alone is not sufficient to understand changes in species composition and other biogeochemical processes with unknown historical patterns might have affected species composition more strongly.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available