4.7 Article

Nitro-PAH formation studied by interacting artificially PAH-coated soot aerosol with NO2 in the temperature range of 295-523 K

Journal

ATMOSPHERIC ENVIRONMENT
Volume 44, Issue 32, Pages 3878-3885

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.atmosenv.2010.07.032

Keywords

Nitro-PAH formation; Nitrogen dioxide; Soot aerosol; Pyrene; Benzo[a]pyrene; Diesel particulate filter

Funding

  1. German Research Foundation

Ask authors/readers for more resources

Diesel particulate matter poses a threat to human health, and in particular nitrated polycyclic aromatic hydrocarbons (NPAHs) found within and on the surface of these particles. Although diesel particulate filters (DPFs) have been designed and implemented to reduce these and other harmful diesel emissions, the particle loaded filters may act as a reaction chamber for the enhanced production of NPAHs from the nitration of PAHs with NO2. Focus is on the investigation of the heterogeneous reactions that occur on soot particles by exposing laboratory produced pyrene- or benzo(a)pyrene-coated spark discharge soot particles to varying concentrations of NO2 and temperatures while following the formation of products over time. The sole nitration product that was observed throughout the experiments with pyrene-coated soot was 1-nitropyrene (1-NPYR), which increased linearly with reaction time for all NO2 concentrations chosen (0.11, 1.0, 2.0, 4.0 ppm, mm(-1)). Resulting 1-NPYR formation rate increased exponentially with [NO2]. Throughout the 3-h experiments less than 10% of pyrene has been converted to 1-NPYR and the partial reaction order with regard to [NO2] was estimated to 1.52. Benzo(a)pyrene (BaP) was more reactive than pyrene. After 3 h reaction time almost 80% of the BaP has been converted to 6-NBaP. Highest 1-NPYR concentrations on particles were detected at 373K, and at higher temperatures a considerable decrease in particulate 1-NPYR was observed. A similar trend was observed in a DPF simulation system (PM-Kat (R)-like) with BaP-coated soot. In this case, highest 6-NBaP concentration on particles was detected at 423 K. Backed by corroborating results from separate gas/solid-phase partition experiments with 1-NPYR and 6-NBaP, it is likely that the newly formed 1-NPYR and 6-NBaP became transferred from particle to gas phase at higher temperatures. Results from this study confirm the presence of 1-NPYR and 6-NBaP in particulate and gas phase under conditions encountered in DPFs, especially when operated at low temperature situations of the aftertreatment system. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available