4.7 Article

Modelling dispersion of traffic pollution in a deep street canyon: Application of CFD and operational models

Journal

ATMOSPHERIC ENVIRONMENT
Volume 43, Issue 14, Pages 2303-2311

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.atmosenv.2009.01.038

Keywords

Deep street canyon; CO; Dispersion modelling; CFD; WinOSPM

Ask authors/readers for more resources

In this study, numerical modelling of the flow and concentration fields has been undertaken for a deep street canyon in Naples (Italy), having aspect ratio (i.e. ratio of the building height H to the street width W) H/W= 5.7. Two different modelling techniques have been employed: computational fluid dynamics (CFD) and operational dispersion modelling. The CFD simulations have been carried out by using the RNG k-epsilon turbulence model included in the commercial suite FLUENT, while operational modelling has been conducted by means of the WinOSPM model. Concentration fields obtained from model simulations have been compared with experimental data of CO concentrations measured at twovertical locations within the canyon. The CFD results are in good agreement with the experimental data, while poor agreement is observed for the WinOSPM results. This is because WinOSPM was originally developed and tested for street canyons with aspect ratio H/W congruent to 1. Large discrepancies in wind profiles Simulated within the canyon are observed between CFD and OSPM models. Therefore, a modification of the wind profile within the canyon is introduced in WinOSPM for extending its applicability to deeper canyons, leading to an improved agreement between modelled and experimental data. Further development of the operational dispersion model is required in order to reproduce the distinct air circulation patterns within deep street canyons. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available