4.7 Review

A comparison of North American and Asian exposure-response data for ozone effects on crop yields

Journal

ATMOSPHERIC ENVIRONMENT
Volume 43, Issue 12, Pages 1945-1953

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.atmosenv.2009.01.005

Keywords

Ozone; Crop yield; Asia; Rice; Wheat; Soybean; Food security

Funding

  1. Sida (the Swedish International Development Co-operation Agency)
  2. Natural Environment Research Council [ceh010023] Funding Source: researchfish

Ask authors/readers for more resources

Modelling-based studies to assess the extent and magnitude of ozone (O-3) risk to agriculture in Asia suggest that yield losses of 5-20% for important crops may be common in areas experiencing elevated O-3 concentrations. These assessments have relied on European and North American dose-response relationships and hence assumed an equivalent Asian crop response to O-3 for local cultivars, pollutant conditions and climate. To test this assumption we collated comparable dose-response data derived from fumigation, filtration and EDU experiments conducted in Asia on wheat. rice and leguminous crop species. These data are pooled and compared with equivalent North American dose-response relationships. The Asian data show that at ambient O-3 concentrations found at the study sites (which vary between similar to 35-75 ppb 4-8 h growing season mean), yield losses for wheat, rice and legumes range between 5-48, 3-47 and 10-65%, respectively. The results indicate that Asian grown wheat and rice cultivars are more sensitive to O-3 than the North American dose-response relationships would suggest. For legumes the scatter in the data makes it difficult to reach any equivalent conclusion in relative sensitivities. As such, existing modelling-based risk assessments may have substantially underestimated the scale of the problem in Asia through use of North American derived dose-response relationships. (c) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available