4.6 Article

Astrocytic activation and delayed infarct expansion after permanent focal ischemia in rats.: Part I:: Enhanced astrocytic synthesis of S-100β in the periinfarct area precedes delayed infarct expansion

Journal

JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM
Volume 22, Issue 6, Pages 711-722

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/00004647-200206000-00010

Keywords

astrocyte; cerebral ischemia; cytokine; glial fibrillary acidic protein; S-100 beta

Ask authors/readers for more resources

An astrocytic protein S-100beta enhances the expression of inducible nitric oxide synthase in cultured astrocytes at micromolar concentrations, leading to nitric oxide-mediated death of cocultured neurons. The present study examined whether S-100beta production by reactive astrocytes accumulating within the periinfarct area was related to delayed expansion of infarct volume after permanent middle cerebral artery occlusion in the rat. After rapid increases during the initial 24 hours, the increase of infarct volume then decelerated while maintaining the increasing tendency until 168 hours in this model, attaining a significant difference compared with that at 24 hours. In the periinfarct area, the number of reactive astrocytes expressing both S-100 and glial fibrillary acidic protein, the tissue level of S-100beta as measured by the sandwich enzyme-linked immunosolvent assay method using anti-S-100beta monoclonal antibody, and the number of terminal deoxynucleotidyl transferase-mediated 2'-deox uridine 5'-triphosphatebiotin nick end labeling-positive cells were significantly increased preceding the delayed expansion of infarct volume. The CSF concentration of S-100beta showed a biphasic increase, presumably reflecting the immediate release from astrocytes within the ischemic core and the subsequent production in reactive e astrocytes within the periinfaret area. These results show for the first time that the enhanced synthesis of S-100beta by reactive astrocytes participates in the inflammatory responses within the periinfarct area, which may be related to the occurrence of delayed infarct expansion as a major component of the cytokine network.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available