4.5 Article

Static and dynamic tooth loading in spur and helical geared systems-experiments and model validation

Journal

JOURNAL OF MECHANICAL DESIGN
Volume 124, Issue 2, Pages 334-346

Publisher

ASME-AMER SOC MECHANICAL ENG
DOI: 10.1115/1.1462044

Keywords

-

Ask authors/readers for more resources

The primary objective of this study is to validate a specific finite element code aimed at simulating dynamic tooth loading in geared rotor systems. Experiments have been conducted on a high-precision single stage spur and helical gear reducer with flexible shafts mounted on hydrostatic or hydrodynamic hearings. The numerical model is based on classical elements (shaft, lumped stiffnesses, ...) and on a gear element which accounts for non-linear time-varying mesh stiffness. gear errors and tooth shape modifications. External and parametric excitations are derived from the instantaneous contact conditions between the mating flanks by using an iterative contact algorithm inserted in a time-step integration scheme. First, experimental and numerical results at low speeds are compared and confirmed that the proposed tooth mesh interface model is valid. Comparisons were then extended to dynamic,fillet stresses on both spur and helical gears between 50-6000 rpm on pinion shaft. Despite a localized problem in the case of spur gears with one particular bearing arrangement, the broad agreement between the experimental anti numerical response curves demonstrated that the model is representative of the dynamic behavior of geared systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available