4.7 Review

Ordering and growth of Langmuir-Blodgett films: X-ray scattering studies

Journal

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0370-1573(01)00083-7

Keywords

Langmuir-Blodgett films; X-ray diffraction and scattering; theory and models of film growth; thermal stability; thermal effects; clusters; nanoparticles and nanocrystalline materials

Ask authors/readers for more resources

The interplay of ordering, confinement and growth in ultrathin films gives rise to various interesting phenomena not observed in bulk materials. The nature of ordering and interfacial morphology present in these films, in turn, depends on their growth mechanism. Well-ordered metal-organic films, deposited using an enigmatic Langmuur-Blodgett (LB) technique, are not only ideal systems for understanding the interplay between growth and structure of ultrathin films but also for studying chemical reactions and phase transitions in confined geometries. Studies on these LB films also enhance our understanding of the fundamental interactions of amphiphilic molecules important for biological systems. Advent of grazing incidence X-ray scattering techniques has enabled us to probe the interfacial structure of these multilayer films at very high resolution and as a result has improved our knowledge about the mechanism of growth processes and about physical/chemical properties of ultrathin films. In this review we will focus our attention on recent results obtained using these X-ray scattering techniques to understand the mechanism of growth leading to formation of remarkably well-ordered LB films after giving a brief outline of these scattering techniques. In addition, we also review recent results on growth and structure of nanoparticles formed by suitable chemical processes within the ordered matrix of LB films. Finally, we will discuss the work done on melting of LB films and its implications in our understanding of melting process in lower dimensions. In all these studies, especially those on as-deposited LB films results of atomic force microscopy measurements have provided important complementary morphological information. (C) 2002 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available