4.5 Article

Contagious disturbance, ecological memory, and the emergence of landscape pattern

Journal

ECOSYSTEMS
Volume 5, Issue 4, Pages 329-338

Publisher

SPRINGER-VERLAG
DOI: 10.1007/s10021-001-0077-1

Keywords

landscape ecology; self-organization; spatial dynamics; patch dynamics; keystone processes; scale; autocorrelation

Categories

Ask authors/readers for more resources

Landscapes are strongly shaped by the degree of interaction between pattern and process. This paper examines how ecological memory, the degree to which an ecological process is shaped by its past modifications of a landscape, influences landscape dynamics. I use a simulation model to examine how ecological memory shapes the landscape dynamics produced by the interaction of vegetative regrowth and fire. The model illustrated that increased ecological memory increased the strength and spatial extent of landscape pattern. The extent of these changes depended upon the relative rates of vegetative recovery and fire initiation. When ecological memory is strong, landscape pattern is persistent; pattern tends to be maintained rather than destroyed by fire. The generality of the simulation model suggests that these results may also apply to disturbance processes other than fire. The existence of ecological memory in ecosystems may allow processes to produce ecological pattern that can entrain other ecosystem variables. The methods presented in this paper to analyze pattern in model ecosystems could be used to detect such pattern in actual ecosystems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available