4.2 Review

Intersonic shear cracks and fault ruptures

Journal

ADVANCES IN PHYSICS
Volume 51, Issue 4, Pages 1189-1257

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/00018730210122328

Keywords

-

Ask authors/readers for more resources

Recent experimental observations of intersonic shear rupture events that occur in a variety of material systems have rekindled interest in the intersonic failure phenomenon. Since the early 1990s, engineers and scientists working in all length scales, from the atomistic, the structural, all the way up to the scale of the earth's deformation processes, have undertaken joint efforts to study this unexplored area of fracture mechanics. The analysis in the present article emphasizes the cooperative and complementary manner in which experimental observations and analytical and numerical developments have proceeded. The article first reviews early contributions to the theoretical literature of dynamic subsonic and intersonic fracture and highlights the significant differences between tensile and shear cracks. The article then uses direct laboratory observations as a framework for discussing the physics of intersonic shear rupture occurring in constitutively homogeneous (isotropic and anisotropic) as well as in inhomogeneous systems, all containing preferable crack paths or faults. Experiments, models, and field evidence at a variety of length scales (from the atomistic, the continuum, and up to the scale of geological ruptures) are used to discuss processes such as (1) shock wave formation, (2) large-scale frictional contact and sliding at the rupture faces, and (3) maximum attainable rupture speeds and rupture speed stability. Particular emphasis is given to geophysical field evidence and to the exploration of the possibility of intersonic fault rupture during shallow crustal earthquake events.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available