4.8 Article

Corrosion control enhancement from a dolomite-amended slow sand filter

Journal

WATER RESEARCH
Volume 36, Issue 11, Pages 2689-2694

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0043-1354(01)00493-6

Keywords

slow sand filter; dolomite; limestone; corrosion control; amendments

Ask authors/readers for more resources

The associated decrease of pH in slow sand filters, due to CO2 conversion and biological activity, may produce effluent that is slightly corrosive to downstream distribution pipe material. This pilot study examined the use of a 3-cm crushed dolomite limestone media layer placed within the filter column of a slow sand filter to enhance effluent corrosion control by the introduction of beneficial dolomite dissolution products, without impacting turbidity removal efficiencies. Turbidity removal, calcium concentration, pH, conductivity, total hardness and alkalinity changes were calculated for the filter during a 60-day pilot study, and water chemistry values were used to estimate the changes of the saturation index (SI) throughout the filter run. Total hardness change through the filter was compared to change calculated by a derived equation for hardness using calcium concentrations to determine if the media was dissolving in stoichiometric proportions, and mineral service life in the filter was estimated using an assumption of stoichiometric dissolution at a constant flow rate. Effluent SI was raised an average of 30%, alkalinity was increased by 19%, and effluent pH averaged 7.7. Filter effluent complied with current turbidity regulatory requirements for the provision of potable water, and mineral service life was estimated between 7.5 and 9.5 years. (C) 2002 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available