4.2 Article

A new vector for high-throughput, ligation-independent cloning encoding a tobacco etch virus protease cleavage site

Journal

PROTEIN EXPRESSION AND PURIFICATION
Volume 25, Issue 1, Pages 8-15

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1006/prep.2001.1603

Keywords

high throughput; structural genomics; ligation-independent cloning; TEV protease; affinity purification

Funding

  1. NIGMS NIH HHS [GM62414-01] Funding Source: Medline

Ask authors/readers for more resources

To establish high-throughput methods for protein crystallography, all aspects of the production and analysis of protein crystals must be accelerated. Automated, plate-based methods for cloning, expression, and evaluation of target proteins will help researchers investigate the vast numbers of proteins now available from sequenced genomes. Ligation-independent cloning (LIC) is well suited to robotic cloning and expression, but few LIC vectors are available commercially. We have developed a new LIC vector, pMCSG7, that incorporates the tobacco etch virus (TEV) protease cleavage site into the leader sequence. This protease is highly specific and functions under a wide range of conditions. The new vector incorporates an N-terminal his-tag followed by the TEV protease recognition site and a SspI restriction site used for LIC. The vector functioned as expected, giving high cloning efficiencies and strong expression of proteins. Purification and cleavage of a target protein showed that the his-tag and the TEV cleavage site function properly. The protein was purified and cleaved under different conditions to simulate both plate-based screening methods and large-scale purifications for crystal production. The vector also includes a pair of adjacent, unique restriction sites that will allow insertion of additional modules between the his-tag and the cleavage site of the leader sequence to generate a family of vectors suitable for high-throughput production of proteins.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available