4.7 Article

Coupled analysis of flow, stress and damage (FSD) in rock failure

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S1365-1609(02)00023-0

Keywords

flow damage; heterogeneous; Weibull

Ask authors/readers for more resources

Rock is a heterogeneous geological material that contains natural weakness of various scales. When rock is subjected to mechanical loading, these pre-existing weaknesses can close, open, grow or induce new fractures, which can in turn change the structure of the rock and alter its fluid flow properties. Experimental results provide strong evidence that rock permeability is not a constant, but a function of stresses and stress-induced damage. A flow-stress-damage (FSD) coupling model for heterogeneous rocks that takes into account the growth of existing fractures and the formation of now fractures is proposed herein. Implemented with the Rock Failure Process Analysis code (F-RFPA(2D)), this FSD model is used to investigate the behaviour of fluid flow and damage evolution, and their coupling action, in samples that are subjected to both hydraulic and biaxial compressive loadings. The modeling results suggest that the nature of fluid flow in rocks varies from material to material, and strongly depends upon the heterogeneity of the rocks. (C) 2002 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available