3.8 Article

Using feedback for coherent control of quantum systems

Journal

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1464-4266/4/3/201

Keywords

coherent control; feedback; ultrafast; quantum state preparation; learning algorithm

Ask authors/readers for more resources

A longstanding goal in chemical physics has been the control of atoms and molecules using coherent light fields. This paper provides a brief overview of the field and discusses experiments that use a programmable pulse shaper to control the quantum state of electronic wavepackets in Rydberg atoms and electronic and nuclear dynamics in molecular liquids. The shape of Rydberg wavepackets was controlled by using tailored ultrafast pulses to excite a beam of caesium atoms. The quantum state of these atoms was measured using holographic techniques borrowed from optics. The experiments with molecular liquids involved the construction of an automated learning machine. A genetic algorithm directed the choice of shaped pulses which interacted with the molecular system inside a learning control loop. Analysis of successful pulse shapes that were found by using the genetic algorithm yield insight into the systems being controlled.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available