4.7 Article

Thermal stresses due to electrical discharge machining

Journal

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/S0890-6955(02)00029-9

Keywords

electrical discharge machining (EDM); FEM; temperature distribution; thermal stresses

Ask authors/readers for more resources

The high temperature gradients generated at the gap during electrical discharge machining (EDM) result in large localized thermal stresses in a small heat-affected zone. These thermal stresses can lead to micro-cracks, decrease in strength and fatigue life and possibly catastrophic failure. A finite element model has been developed to estimate the temperature field and thermal stresses due to Gaussian distributed heat flux of a spark during EDM. First, the developed code calculates the temperature in the workpiece and then the thermal stress field is estimated using this temperature field. The effects of various process variables (current and duty cycle) on temperature distribution and thermal stress distribution have been reported. The results of the analysis show high temperature gradient zones and the regions of large stresses where, sometimes, they exceed the material yield strength. (C) 2002 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available