4.8 Article

Assembly of nanoparticles into hollow spheres using block copolypeptides

Ask authors/readers for more resources

Various modes are being explored for the construction of functional materials out of nanoparticles. Despite these efforts, the assembly of nanoparticles remains challenging with respect to the requirement of multiple component organization on varying dimensions and length scales. We report here a room-temperature, wet chemical-based synthesis route in which silica and gold nanoparticles (similar to10 nm) are cooperatively assembled with lysine-cysteine diblock copolypeptides into robust hollow spheres (diameter similar to microns). The walls of the hollow spheres are composed of two distinct layers of silica and gold nanoparticles, and the hollow center is created without the use of a sacrificial core, emulsion phase, or hollow preformed substrate. Block copolypeptides designed with specific recognition sites for nanoparticles of various compositions provide a versatile approach for the hierarchical organization of nanoparticles into multidimensional composite arrays.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available