4.7 Article

The inherent cellular level of reactive oxygen species: One of the mechanisms determining apoptotic susceptibility of leukemic cells to arsenic trioxide

Journal

APOPTOSIS
Volume 7, Issue 3, Pages 209-215

Publisher

SPRINGER
DOI: 10.1023/A:1015331229263

Keywords

apoptosis; arsenic trioxide; reactive oxygen species

Ask authors/readers for more resources

Though reactive oxygen species (ROS) has been noticed to be involved in arsenic trioxide (As2O3)-induced apoptosis of tumor cells, its role in apoptosis signaling remained to be elucidated. The objective of this work was to explore the association of the inherent cellular ROS level with the susceptibility of the tumor cells to apoptosis induction by As2O3. Low concentration of As2O3 was administered to cultured leukemic cell lines NB4, U937, HL60 and K562. The difference in apoptotic sensitivity was displayed among four cell types. ROS probes were incubated with the cells in the absence of As2O3, and ROS was thus quantified relatively by flow cytometry. We manifested, in four cell types, the inherently existed difference in whole ROS quantity, and a positive correlation between the inherent ROS level and their apoptotic sensitivity to As2O3. Furthermore, by interference using a ROS producer, we demonstrated that an elevation of ROS level would sensitize the cells to As2O3-induced apoptosis. The results of the present work suggested that the inherent ROS level might be determinative in tumor cells for their apoptotic susceptibility to As2O3.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available