4.7 Article

Polyamine depletion prevents camptothecin-induced apoptosis by inhibiting the release of cytochrome c

Journal

AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY
Volume 282, Issue 6, Pages C1290-C1297

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpcell.00351.2001

Keywords

polyamines; alpha-difluoromethylornithine; mitochondria; Bcl-2 protein; caspase-9

Ask authors/readers for more resources

We have shown previously that depletion of polyamines delays apoptosis induced by camptothecin in rat intestinal epithelial cells (IEC-6). Mitochondria play an important role in the regulation of apoptosis in mammalian cells because apoptotic signals induce mitochondria to release cytochrome c. The latter interacts with Apaf-1 to activate caspase-9, which in turn activates downstream caspase-3. Bcl-2 family proteins are involved in the regulation of cytochrome c release from mitochondria. In this study, we examined the effects of polyamine depletion on the activation of the caspase cascade, release of cytochrome c from mitochondria, and expression and translocation of Bcl-2 family proteins. We inhibited ornithine decarboxylase, the first rate-limiting enzyme in polyamine synthesis, with alpha-difluoromethylornithine (DFMO) to deplete cells of polyamines. Depletion of polyamines prevented camptothecin-induced release of cytochrome c from mitochondria and decreased the activity of caspase-9 and caspase-3. The mitochondrial membrane potential was not disrupted when cytochrome c was released. Depletion of polyamines decreased translocation of Bax to mitochondria during apoptosis. The expression of antiapoptotic proteins Bcl-x(L) and Bcl-2 was increased in DFMO-treated cells. Caspase-8 activity and cleavage of Bid were decreased in cells depleted of polyamines. These results suggest that polyamine depletion prevents IEC-6 cells from apoptosis by preventing the translocation of Bax to mitochondria, thus preventing the release of cytochrome c.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available