4.6 Article

Effects of nonuniformity in thin-film photovoltaics

Journal

APPLIED PHYSICS LETTERS
Volume 80, Issue 22, Pages 4256-4258

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1483118

Keywords

-

Ask authors/readers for more resources

We discuss the physical origin and effects of micrononuniformities on thin-film photovoltaics. The key factors are the large device area and the presence of potential barriers in the grain boundaries (for polycrystalline films) and in device junctions. We model the nonuniformity effects in the terms of random microdiodes connected in parallel through a resistive electrode. The microdiodes of low open circuit voltages are shown to affect macroscopically large regions. They strongly reduce the device performance and induce its nonuniform degradation in several different modes. We support our predictions by experiments, which show that the device degradation is driven by the light-induced forward bias and is spatially nonuniform. (C) 2002 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available