4.7 Article

A specific and potent inhibitor of brassinosteroid biosynthesis possessing a dioxolane ring

Journal

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
Volume 50, Issue 12, Pages 3486-3490

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jf011716w

Keywords

brassinosteroid; inhibitor; brassinosteroid biosynthesis; gibberellin biosynthesis; brassinazole

Ask authors/readers for more resources

Screening for brassinosteroid biosynthesis inhibitors was performed to find azole derivatives that induced dwarfism, to resemble brassinosteroid-deficient mutants in Arabidopsis, and which could be rescued by brassinosteroid. Through this screening experiment, propiconazole fungicide was selected as a likely inhibitor of brassinosteroid biosynthesis and, thus, propiconazole derivatives with optimized activity and selectivity were synthesized. The biological activity of these compounds was evaluated by examining cress stem elongation. Among the compounds tested, 2RS,4RS-1-[2-(4-trifluoromethylphenyl)-4-n-propyl-1,3-dioxolan-2-ylmethyl]-1H-1,2,4-triazole (12) showed the most potent capability to retard cress stem elongation in the light. The compound-induced hypocotyl dwarfism was restored by the coapplication of 10 nM brassinolide but not by 1 muM gibberellin. These results suggest that 12 should affect brassinosteroid biosynthesis. The potency and specificity of 12 were greater than those of brassinazole, a previously reported brassinosteroid biosynthesis inhibitor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available