4.7 Article

Some general effects of strong high-frequency excitation: Stiffening, biasing and smoothening

Journal

JOURNAL OF SOUND AND VIBRATION
Volume 253, Issue 4, Pages 807-831

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1006/jsvi.2001.4036

Keywords

-

Ask authors/readers for more resources

Mechanical high-frequency (HF) excitation provides a working principle behind many industrial and natural applications and phenomena. This paper concerns three particular effects of HF excitation, that may change the apparent characteristics of mechanical systems: (1) stiffening, by which the apparent linear stiffness associated with an equilibrium is changed, along with derived quantities such as stability and natural frequencies; (2) biasing by which the system is biased towards a particular state, static or dynamic, which does not exist or is unstable in the absence of the HF excitation; and (3) smoothening, referring to a tendency for discontinuities to be effectively smeared out by HF excitation. Illustrating First these effects for a few specific systems, analytical results are provided that quantify them for a quite general class of mechanical systems. This class covers systems that can be modelled by a finite number of second order ordinary differential equations, generally non-linear, with periodically oscillating excitation terms of high frequency and small amplitude. The results should be useful for understanding the effects in question in a broader perspective than is possible with specific systems, for calculating effects for specific systems using well-defined formulas, and for possibly designing systems that display prescribed characteristics in the presence of HF excitation. (C) 2002 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available