4.6 Article

Notch3 signaling in vascular smooth muscle cells induces c-FLIP expression via ERK/MAPK activation - Resistance to Fas ligand-induced apoptosis

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 277, Issue 24, Pages 21723-21729

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M202224200

Keywords

-

Ask authors/readers for more resources

Mutations in the Notch3 receptor result in the cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephelopathy (CADASIL) syndrome, a heritable arteriopathy predisposing to early onset stroke. Based upon clinical evidence that CADASIL arteriopathy results in degeneration and loss of vascular smooth muscle cells (VSMC) from the arterial wall, we postulated that Notch3 signaling is a critical determinant of VSMC survival. We initially established that both transient and constitutive Notch3 signaling promoted VSMC survival in response to the proapoptotic Fas ligand (FasL). Resistance to FasL-induced apoptosis was associated with the induction of e-FLIP, a primary inhibitor of the FasL signaling pathway. We determined that Notch3's regulation of c-FLIP was independent of the activity of the classical DNA-binding protein, RBPJk, but dependent upon cross-talk activation of the ERK/MAPK pathway. We extended our observations to the in vivo context by deter-mining a coordinate regulation of Notch3 and c-FLIP within the arterial wall in response to injury. Furthermore, we defined that expression levels of Notch3 and c-FLIP are coordinately up-regulated within the neointima of remodeled arteries. Taken together, these findings provide initial evidence that Notch3 signaling may be a critical determinant of VSMC survival and vascular structure by modulating the expression of downstream mediators of apoptosis via signaling cross-talk with the ERK/MAPK pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available