4.7 Review

The iron regulatory proteins: Targets and modulators of free radical reactions and oxidative damage

Journal

FREE RADICAL BIOLOGY AND MEDICINE
Volume 32, Issue 12, Pages 1237-1243

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/S0891-5849(02)00825-0

Keywords

iron; iron regulatory proteins; oxygen radicals; nitric oxide; xenobiotics; free radicals

Ask authors/readers for more resources

Iron acquisition is a fundamental requirement for many aspects of life, but excess iron may result in formation of free radicals that damage cellular constituents. For this reason, the amount of iron within the cell is carefully regulated in order to provide an adequate level of a micronutrient while preventing its accumulation and toxicity. A major mechanism for the regulation of iron homeostasis relies on the post-transcriptional control of ferritin and transferrin receptor mRNAs, which are recognized by two cytoplasmic iron regulatory proteins (IRP-1 and IRP-2) that modulate their translation and stability, respectively. IRP-1 can function as a mRNA binding protein or as an aconitase, depending on whether it disassembles or assembles an iron-sulfur cluster in response to iron deficiency or abundancy, respectively. IRP-2 is structurally and functionally similar to IRP-1, but does not assemble a cluster nor exhibits aconitase activity. Here we briefly review the role of IRP in iron-mediated damage induced by oxygen radicals, nitrogen-centered reactive species, and xenobiotics of pharmacological and clinical interest. (C) 2002 Elsevier Science Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available