4.6 Article

Prostaglandin D2 and its metabolites induce caspase-dependent granulocyte apoptosis that is mediated via inhibition of IκBα degradation using a peroxisome proliferator-activated receptor-γ-independent mechanism

Journal

JOURNAL OF IMMUNOLOGY
Volume 168, Issue 12, Pages 6232-6243

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.168.12.6232

Keywords

-

Categories

Ask authors/readers for more resources

Many inflammatory mediators retard granulocyte apoptosis. Most natural PGs studied herein (e.g., PGE(2), PGA(2), PGA(1), PGF(2alpha)) either delayed apoptosis or had no effect, whereas PGD(2) and its metabolite PGJ(2) selectively induced eosinophil, but not neutrophil apoptosis. This novel proapoptotic effect does not appear to be mediated via classical PG receptor ligation or by elevation of intracellular cAMP or Ca2+. Intriguingly, the sequential metabolites Delta(12)PGJ(2) and 15-deoxy-Delta(12.) Delta(14)-PGJ(2) (15dPGJ(2)) induced caspase-dependent apoptosis in both granulocytes, an effect that did not involve de novo protein synthesis. Despite the fact that Delta(12)PGJ(2) and 15dPGJ(2) are peroxisome proliferator-activated receptor-gamma (PPAR-gamma) activators, apoptosis was not mimicked by synthetic PPAR-gamma and PPAR-alpha ligands or blocked by an irreversible PPAR-gamma antagonist. Furthermore, Delta(12)PGJ(2) and 15dPGJ(2) inhibited LPS-induced IkappaBalpha degradation and subsequent inhibition of neutrophil apoptosis, suggesting that apoptosis is mediated via PPAR-gamma-independent inhibition of NF-kappaB activation. In addition, we show that TNF-alpha-mediated loss of cytoplasmic IkappaBalpha in eosinophils is inhibited by 15dPGJ(2) in a concentration-dependent manner. The selective induction of eosinophil apoptosis by PGD(2) and PGJ(2) may help define novel therapeutic pathways in diseases in which it would be desirable to specifically remove eosinophils but retain neutrophils for antibacterial host defense. The powerful proapoptotic effects of Delta(12)PGJ(2) and 15dPGJ(2) in both granulocyte types suggest that these natural products control the longevity of key inflammatory cells and may be relevant to understanding the control and resolution of inflammation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available