4.4 Article

Organization of an efficient carbonic anhydrase:: Implications for the mechanism based on structure-function studies of a T199P/C206S mutant

Journal

BIOCHEMISTRY
Volume 41, Issue 24, Pages 7628-7635

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi020053o

Keywords

-

Ask authors/readers for more resources

Substitution of Pro for Thr199 in the active site of human carbonic anhydrase II (HCA II)(1) reduces its catalytic efficiency about 3000-fold. X-ray crystallographic structures of the T199P/C206S variant have been determined in complex with the substrate bicarbonate and with the inhibitors thiocyanate and beta-mercaptoethanol. The latter molecule is normally not an inhibitor of wild-type HCA II. All three ligands display novel binding interactions to the T199P/C206S mutant. The beta-mercaptoethanol molecule binds in the active site area with its sulfur atom tetrahedrally coordinated to the zinc ion. Thiocyanate binds tetrahedrally coordinated to the zinc ion in T199P/C206S, in contrast to its pentacoordinated binding to the zinc ion in wild-type HCA II. Bicarbonate binds to the mutant with two of its oxygens at the positions of the zinc water (Wat263) and Wat318 in wild-type HCA II. The environment of this area is more hydrophilic than the normal bicarbonate-binding site of HCA II situated in the hydrophobic part of the cavity normally occupied by the so-called deep water (Wat338). The observation of a new binding Zn site for bicarbonate has implications for understanding the mechanism by which the main-chain amino,group of Thr199 acquired an important role for orientation of the substrate during the evolution of the enzyme.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available