4.8 Article

Crystal structure of parallel quadruplexes from human telomeric DNA

Journal

NATURE
Volume 417, Issue 6891, Pages 876-880

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature755

Keywords

-

Ask authors/readers for more resources

Telomeric ends of chromosomes, which comprise noncoding repeat sequences of guanine-rich DNA, are fundamental in protecting the cell from recombination and degradation(1). Disruption of telomere maintenance leads to eventual cell death, which can be exploited for therapeutic intervention in cancer. Telomeric DNA sequences can form four-stranded (quadruplex) structures(2-4), which may be involved in the structure of telomere ends(5). Here we describe the crystal structure of a quadruplex formed from four consecutive human telomeric DNA repeats and grown at a K+ concentration that approximates its intracellular concentration. K+ ions are observed in the structure. The folding and appearance of the DNA in this intramolecular quadruplex is fundamentally different from the published Na+-containing quadruplex structures(2,4,6). All four DNA strands are parallel, with the three linking trinucleotide loops positioned on the exterior of the quadruplex core, in a propeller-like arrangement. The adenine in each TTA linking trinucleotide loop is swung back so that it intercalates between the two thymines. This DNA structure suggests a straightforward path for telomere folding and unfolding, as well as ways in which it can recognize telomere-associated proteins.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available