4.6 Article

Solvent-free acetylation of lignocellulosic fibers at room temperature: Effect on fiber structure and surface properties

Journal

JOURNAL OF APPLIED POLYMER SCIENCE
Volume 132, Issue 29, Pages -

Publisher

WILEY-BLACKWELL
DOI: 10.1002/app.42247

Keywords

cellulose and other wood products; compatibilization; composites; fibers

Funding

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)

Ask authors/readers for more resources

Acetylation is one of the most interesting chemical treatments to improve the affinity of lignocellulosic fibers with polymeric matrices for the elaboration of several types of composites. In this paper, the acetylation of flax and wood pulp (bleached softwood Kraft pulp and thermomechanical pulp) fibers was carried out at room temperature in a solvent-free system with acetic anhydride in the presence of sulfuric acid as catalyst. The effect of acetylation on the fine structure of fibers was investigated by spectroscopic methods, while the extent of acetylation was quantified by weight percent gain. The effect of reaction time on fiber morphology was studied at macro- and microscale using scanning electron microscopy, optical microscopy, and fiber quality analysis. The evolution of the hydrophobic/hydrophilic character of fibers was determined by contact angle measurements. The wettability of fibers by liquid epoxy resin was also evaluated to confirm the improvement of the affinity of acetylated fibers with the epoxy matrix. It was found that the hydrophilic character of fibers decrease with increasing reaction time, whereas the trend was less pronounced beyond specific reaction times. Acetylated fibers can therefore be potential candidates for replacing nonbiodegradable reinforcing materials in composite applications. (c) 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 42247.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available