4.4 Article

Residues in the ε subunit of the nicotinic acetylcholine receptor interact to confer selectivity of waglerin-1 for the α-ε subunit interface site

Journal

BIOCHEMISTRY
Volume 41, Issue 25, Pages 7895-7906

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi025732d

Keywords

-

Funding

  1. NIGMS NIH HHS [GM 07752, GM 18360] Funding Source: Medline
  2. NINDS NIH HHS [NS 31744] Funding Source: Medline

Ask authors/readers for more resources

Waglerin-1 (Wtx-1) is a 22-amino acid peptide that competitively antagonizes muscle nicotinic acetylcholine receptors (nAChRs). Previous work demonstrated that Wtx-1 binds to mouse nAChRs with higher affinity than receptors from rats or humans, and distinguished residues in alpha and epsilon subunits that govern the species selectivity. These studies also showed that Wtx-1 binds selectively to the alpha-epsilon binding site with significantly higher affinity than to the alpha-delta binding site. Here we identify residues at equivalent positions in the epsilon, gamma, and delta subunits that govern Wtx-1 selectivity for one of the two binding sites on the nAChR pentamer. Using a series of chimeric and point mutant subunits, we show that residues Gly-57, Asp-59, Tyr-111, Tyr-115, and Asp-173 of the epsilon subunit account predominantly for the 3700-fold higher affinity of the alpha-epsilon site relative to that of the alpha-gamma site. Similarly, we find that residues Lys-34, Gly-57, Asp-59, and Asp-173 account predominantly for the high affinity of the alpha-epsilon site relative to that of the alpha-delta site. Analysis of combinations of point mutations reveals that Asp-173 in the epsilon subunit is required together with the remaining determinants in the epsilon subunit to achieve Wtx-1 selectivity. In particular, Lys-34 interacts with Asp-173 to confer high affinity, resulting in a AAG(INT) of -2.3 kcal/mol in the c subunit and a DeltaDeltaG(INT) of -1.3 kcal/mol in the delta subunit. Asp-173 is part of a nonhomologous insertion not found in the acetylcholine binding protein structure. The key role of this insertion in Wtx-1 selectivity indicates that it is proximal to the ligand binding site. We use the binding and interaction energies for Wtx-1 to generate structural models of the alpha-epsilon, alpha-gamma, and alpha-delta binding sites containing the nonhomologous insertion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available