4.8 Article

Macromolecular chirality induction on optically inactive poly(4-carboxyphenyl isocyanide) with chiral amines: A dynamic conformational transition of poly(phenyl isocyanide) derivatives

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 124, Issue 25, Pages 7448-7458

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja0259537

Keywords

-

Ask authors/readers for more resources

Optically active polyisocyanides (poly(iminomethylenes)) have been prepared with much interest in developing new functional materials. Polyisocyanides have been considered to have a stable 41 helical conformation even in solution when they have a bulky side group. However, the conformational characteristics of poly(phenyl isocyanide) (PPI) derivatives are still under debate. We now report that an optically inactive PPI derivative, poly(4-carboxyphenyl isocyanide) (poly-1), shows optical activity in the polymer backbone induced by external, chiral stimuli through acid-base interactions under thermodynamic control and exhibits induced circular dichroism (ICD) in the UV-visible region in DMSO. The ICD intensities of the poly-1-chiral amine complexes in DMSO gradually increased with time, and, in one case, the value reached 3 times that of the original value after 2 months at 30 degreesC. The conformational changes also occurred very slowly for poly-1 alone and its ethyl ester with time on the basis of H-1 NMR spectroscopic analysis. These results indicate that PPIs bearing a less bulky substituent may not have a 41 helical conformation but have a different type of prochiral conformation, for instance, an s-trans (zigzag) structure which may transform to a dynamic, one-handed helical conformation when the PPIs have a functional group capable of interacting with chiral compounds. The mechanism of helicity induction on poly-1 through a dynamic conformational transition is discussed on the basis of the above results together with molecular dynamic simulation results for PPI.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available