4.6 Article

Alignment of myoblasts on ultrafine gratings inhibits fusion in vitro

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S1357-2725(01)00180-7

Keywords

myogenesis; adhesion; ultrafine gratings; photolithography; fusion

Ask authors/readers for more resources

During development, skeletal muscle precursor cells fuse to form multi-nucleated myotubes. However, it is unclear how this fusion is regulated such that linear myotubes are produced. In a previous study, we found that linear arrays of myoblasts cultured on micropattems of laminin fused to form linear myotubes of a constant diameter. independent of the width of the laminin track. This suggested that a mechanism exists to prevent myoblasts from fusing laterally [Exp. Cell Res. 230 (1997) 275]. In this study, we have investigated this further by culturing myoblasts on ultrafine grooved surfaces previously shown to align fibroblasts and epithelial cells. We found that all the individual myoblasts were highly aligned along the groove axis, and time-lapse recordings showed that motility was mostly restricted to a direction parallel to the grooves. In contrast to the previous study, however, there was a strong tendency for early differentiating cells to form aggregates either at an angle of approximately 45degrees or perpendicular to the groove axis. Nevertheless, we rarely saw myotubes formed at those angles, supporting our earlier idea that the ability of cells to fuse laterally is prohibited. Our data strongly suggest that myoblasts are most likely to fuse in an end-to-end configuration, and it is this that enables them to form linear, rather than irregular myotubes. (C) 2002 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available