4.7 Article

Galaxy clusters in Hubble volume simulations: Cosmological constraints from sky survey populations

Journal

ASTROPHYSICAL JOURNAL
Volume 573, Issue 1, Pages 7-36

Publisher

IOP PUBLISHING LTD
DOI: 10.1086/340551

Keywords

cosmology : theory; dark matter; galaxies : clusters : general; intergalactic medium

Ask authors/readers for more resources

We use gigaparticle N-body simulations to study galaxy cluster populations in Hubble volumes of LambdaCDM (Omega(m) = 0.3, Omega(Lambda) = 0.7) and tauCDM (Omega(m) = 1) world models. Mapping past light cones of locations in the computational space, we create mock sky surveys of dark matter structure to z similar or equal to 1.4 over 10,000 deg(2) and to z similar or equal to 0.5 over two full spheres. Calibrating the Jenkins mass function at z = 0 with samples of 1.5 million clusters, we show that the fit describes the sky survey counts to less than or similar to20% accuracy over all redshifts for systems more massive than poor galaxy groups (5 x 10(13) h(-1) M.). Fitting the observed local temperature function determines the ratio beta of specific thermal energies in dark matter and intracluster gas. We derive a scaling with power spectrum normalization beta proportional to sigma(8)(5/3) and find that the LambdaCDM model requires sigma(8) = 1.04 to match beta = 1.17 derived from gasdynamic cluster simulations. We estimate a 10% overall systematic uncertainty in sigma(8), 4% arising from cosmic variance in the local sample and the bulk from uncertainty in the absolute mass scale of clusters. Considering distant clusters, the LambdaCDM model matches Extended Medium-Sensitivity Survey and ROSAT Deep Cluster Survey X-ray selected observations under economical assumptions for intracluster gas evolution. Using transformations of mass-limited cluster samples that mimic sigma(8) variation, we explore Sunyaev-Zeldovich (SZ) search expectations for a 10 deg(2) survey complete above 10(14) h(-1) M.. Cluster counts are shown to be extremely sensitive to sigma(8) uncertainty, while redshift statistics, such as the sample median, are much more stable. Redshift information is crucial to extract the full cosmological diagnostic power of SZ cluster surveys. For LambdaCDM, the characteristic temperature at a fixed sky surface density is a weak function of redshift, implying an abundance of hot clusters at z > 1. Assuming constant beta, one 8 keV cluster at z > 2 and 10 5 keV clusters at z > 3 are expected in the Sloan Digital Sky Survey area. Too many such clusters can falsify the model; detection of clusters more massive than Coma at z > 1 violates LambdaCDM at 95% confidence if their surface density exceeds 0.003 deg(-2), or 120 on the whole sky.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available