4.6 Article

D/HD transition in photon dominated regions (PDR)

Journal

ASTRONOMY & ASTROPHYSICS
Volume 390, Issue 1, Pages 369-381

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361:20020729

Keywords

astrochemistry; molecular processes; ISM : molecules

Ask authors/readers for more resources

We present the basic features of a steady state chemical model of Photon Dominated Regions (PDR), where the deuterium chemistry is explicitly introduced. The model is an extension of a previous PDR model (Abgrall et al. 1992; Le Bourlot et al. 1993; Le Bourlot 2000) in which the microscopic processes relative to HD have been incorporated. The J-dependent photodissociation probabilities have been calculated and included in the statistical equilibrium of the rotational levels of HD where the latest collision molecular data are also introduced. The thermal balance is calculated from the equilibrium between the different heating and cooling processes. We introduce a standard model of density n(H) = 500 cm(-3) embedded in the Interstellar Standard Radiation Field (ISRF) from which we derive the main properties of HD in PDR. The D/HD transition does not depend only on the density, radiation field but also on the chemical processes and especially on the dust formation efficiency. In standard radiation field conditions, the D/HD transition occurs in a narrow range of visual extinctions as long as density is less than 1000 cm(-3) and HD is formed through the D+ + H-2 reaction. At higher densities a logarithmic dependence of the location of the transition is derived. The model is applied both to ultraviolet absorption observations from the ground rotational state of HD performed in diffuse and translucent clouds and infrared emission detectable at high densities and for high ultraviolet radiation fields coming from the bright surrounding stars.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available