3.8 Article

Effect of endurance training on oestrogen receptor alpha expression in different rat skeletal muscle type

Journal

ACTA PHYSIOLOGICA SCANDINAVICA
Volume 175, Issue 3, Pages 211-217

Publisher

BLACKWELL PUBLISHING LTD
DOI: 10.1046/j.1365-201X.2002.00992.x

Keywords

oestrogen receptor alpha; muscle type; RT-PCR; skeletal muscle; training

Categories

Ask authors/readers for more resources

It is well known that oestrogens exert muscle anabolic and metabolic effects. Oestrogens act via specific oestrogen receptor (ER) proteins. The mainly represented oestrogen receptor alpha messenger ribonucleic acid subtype (ERalpha mRNA) was described in various tissues including the skeletal muscle. Moreover, it has been shown that endurance training significantly increases ERalpha mRNA levels in the female rat gastrocnemius muscle. The aim of this study was to determine if this training programme also modifies ERalpha mRNA levels in muscles with different typology, the soleus (slow twitch muscle), extensor digitorum longus (fast twitch muscle) and gastrocnemius (intermediate muscle). So far, two groups of Wistar female rats were set up: untrained (u) (n = 7), and trained (e) (n = 7). The endurance training programme was performed for 7 weeks, 5 days per week and consisted of 1 h of continuous running on an adapted motor-driven treadmill involving progressive intensity and gradient of the treadmill. Three different skeletal muscles, extensor digitorum longus (E), gastrocnemius (G) and soleus (S), were isolated and weighed in the untrained (Eu, Gu and Su) and trained group (Ee, Ge and Se). Semi-quantification of ERalpha mRNA levels was performed by the reverse transcriptase-polymerase chain reaction (RT-PCR) technique. In order to attest the efficiency of our endurance training programme, the citrate synthase activity (CS) of each muscle was measured by a fluorimetric method. The CS activity was significantly increased with training in the gastrocnemius [100.00 +/- 4.99% in Gu (n = 6) vs. 138.10 +/- 8.82% in Ge (n = 6), P < 0.01] and in the soleus [100.00 +/- 2.92% in Su (n = 7) vs. 115.90 +/- 3.71% in Se (n = 7), P < 0.01] but not in the extensor digitorum longus [100.00 +/- 1.87% in Eu (n = 7) vs. 96.90 +/- 1.55% in Ee (n = 7)]. Concerning the influence of muscle type on ERalpha mRNA level (1) in the untrained group, the ERalpha mRNA level was significantly higher in soleus muscle compared with gastrocnemius and extensor digitorum longus muscles [0.43 +/- 0.04 in Su (n = 7) compared with 0.31 +/- 0.03 in Gu (n = 6) and 0.21 +/- 0.03 in Eu (n = 7), P < 0.05; P < 0.05); 2] in the trained group, the ERalpha mRNA level was significantly higher insoleus and gastrocnemius muscles compared with extensor digitorum longus muscle [0.43 +/- 0.06 in Se (n = 7) and 0.49 +/- 0.05 in Ge (n = 6) vs. 0.12 +/- 0.01 in Ee (n = 7), P < 0.05; P < 0.05]. Indeed, after training, the ERalpha mRNA level significantly increased in gastrocnemius muscle [0.31 +/- 0.03 in Gu(n = 6) vs. 0.49 +/- 0.05 in Ge (n = 6), P < 0.01], significantly decreased in extensor digitorum longus [0.21 +/- 0.03 in Eu (n = 7) vs. 0.12 +/- 0.01 in Ee (n = 7), P < 0.01] and was not significantly modified in soleus [0.43 +/- 0.04 in Su (n = 7) vs. 0.43 +/- 0.06 in Se (n = 7)]. The differences in ERalpha mRNA level between trained and untrained animals indicate training-induced effects that are specific to the skeletal muscle type.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available