4.7 Article

How does photorespiration modulate leaf amino acid contents? A dual approach through modelling and metabolite analysis

Journal

PLANT CELL AND ENVIRONMENT
Volume 25, Issue 7, Pages 821-835

Publisher

BLACKWELL PUBLISHING LTD
DOI: 10.1046/j.1365-3040.2002.00866.x

Keywords

potato (Solanum tuberosum ); wheat (Triticum aestivum ); carbon-nitrogen interactions; glutamate; glutamine; glycine; nitrogen assimilation; photosynthesis; serine; 2-oxoglutarate

Categories

Ask authors/readers for more resources

The aim of this work was to establish the quantitative impact of photorespiration on leaf amino acid contents. Attached leaves of wheat and potato were incubated for 30-40 min under defined conditions in which net CO2 uptake (A ) was manipulated by irradiance, ambient CO2 or ambient O-2 . The incubated portion of the leaf was sampled by a rapid-quench method and photorespiratory flux (v (o) ) was modelled from the measured rate of net CO2 uptake. In both wheat and potato, the ratio between glycine and serine showed a strong positive correlation with v (o) . Aspartate and alanine correlated negatively with v (o) but glutamate and glutamine showed less clear relationships. In potato, glutamate and glutamine did not correlate clearly with either A or v (o) . In wheat, glutamine showed a general increase with A but no relationship with v (o) , whereas 2-oxoglutarate contents correlated positively with v (o) and negatively with A . As a result, glutamine : glutamate and glutamine : 2-oxoglutarate increased with net CO2 uptake in wheat, observations that are attributed primarily to imperfect and variable coupling between the supply of NH3 in primary nitrogen assimilation and the associated delivery of 2-oxoglutarate to the chloroplast. A simple theoretical analysis is used to illustrate the potentially marked impact of primary nitrogen assimilation on leaf glutamine, even against a background of high rates of photorespiratory ammonia recycling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available