4.6 Article

CaMKII-dependent reactivation of SR Ca2+ uptake and contractile recovery during intracellular acidosis

Journal

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00026.2001

Keywords

cardiac myocyte; intracellular pH; intracellular Ca(2+) concentration; ATPase

Ask authors/readers for more resources

In hearts, intracellular acidosis disturbs contractile performance by decreasing myofibrillar Ca(2+) response, but contraction recovers at prolonged acidosis. We examined the mechanism and physiological implication of the contractile recovery during acidosis in rat ventricular myocytes. During the initial 4 min of acidosis, the twitch cell shortening decreased from 2.3 +/- 0.3% of diastolic length to 0.2 +/- 0.1% (means +/- SE, P < 0.05, n = 14), but in nine of these cells, contractile function spontaneously recovered to 1.5 +/- 0.3% at 10 min (P < 0.05 vs. that at 4 min). During the depression phase, both the diastolic intracellular Ca(2+) concentration ([Ca(2+)](i)) and Ca(2+) transient (CaT) amplitude increased, and the twitch [Ca(2+)](i) decline prolonged significantly (P < 0.05). In the cells that recovered, a further increase in CaT amplitude and a reacceleration of twitch [Ca(2+)](i) decline were observed. The increase in diastolic [Ca(2+)](i) was less extensive than the increase in the cells that did not recover (n = 5). Blockade of sarcoplasmic reticulum (SR) function by ryanodine (10 mu M) and thapsigargin (1 mu M) or a selective inhibitor of Ca(2+)-calmodulin kinase II, 2-[N-(2- hydroxyethyl)-N-(4-methoxybenzenesulfonyl)] amino- N( 4-chlorocinnamyl)-N-methylbenzylamine (1 mu M) completely abolished the reacceleration of twitch [Ca(2+)](i) decline and almost eliminated the contractile recovery. We concluded that during prolonged acidosis, Ca(2+)-calmodulin kinase II-dependent reactivation of SR Ca(2+) uptake could increase SR Ca(2+) content and CaT amplitude. This recovery can compensate for the decreased myofibrillar Ca(2+) response, but may also cause Ca(2+) overload after returning to physiological pHi.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available