4.8 Article

Leucine-derived cyano glucosides in barley

Journal

PLANT PHYSIOLOGY
Volume 129, Issue 3, Pages 1066-1075

Publisher

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.001263

Keywords

-

Categories

Ask authors/readers for more resources

Barley (Hordeum vulgare) seedlings contain five cyano glucosides derived from the amino acid L-leucine (Leu). The chemical structure and the relative abundance of the cyano glucosides were investigated by liquid chromatography-mass spectrometry and nuclear magnetic resonance analyses using spring barley cultivars with high, medium, and low cyanide potential. The barley cultivars showed a 10-fold difference in their cyano glucoside content, but the relative content of the individual cyano glucosides remained constant. Epiheterodendrin, the only cyanogenic glucoside present, comprised 12% to 18% of the total content of cyano glucosides. It is proposed that the aglycones of all five cyano glucosides are formed by the initial action of a cytochrome P450 enzyme of the CYP79 family converting L-Leu into Z-3-methylbutanal oxime and subsequent action of a less specific CYP71E enzyme converting the oxime into 3-methylbutyro nitrile and mediating subsequent hydroxylations at the alpha-, as well as beta- and gamma-, carbon atoms. Presence of cyano glucosides in the barley seedlings was restricted to leaf tissue, with 99% confined to the epidermis cell layers of the leaf blade. Microsomal preparations from epidermal cells were not able to convert L-[C-14]Leu into the biosynthetic intermediate, Z-3-methylbutanal-oxime. This was only achieved using microsomal preparations from other cell types in the basal leaf segment, demonstrating translocation of the cyano glucosides to the epidermal cell layers after biosynthesis. A beta-glucosidase able to degrade epiheterodendrin was detected exclusively in yet a third compartment, the endosperm of the germinating seed. Therefore, in barley, a putative function of cyano glucosides in plant defense is not linked to cyanide release.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available