4.7 Article

Krook collisional models of the kinetic susceptibility of plasmas

Journal

PHYSICAL REVIEW E
Volume 66, Issue 1, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.66.016407

Keywords

-

Ask authors/readers for more resources

An assessment is made of Krook collisional models used to describe the kinetic behavior of collective oscillations, i.e., when Landau damping and collisions must be considered, as is often the case for low-frequency waves. The study focuses on an early energy-conserving model [B. D. Fried, A. N. Kaufman, and D. L. Sachs, Phys. Fluids 9, 292 (1966)] that is shown to be identical to a more modern version used in drift-wave stability studies [G. Rewoldt, W. M. Tang, and R. J. Hastie, Phys. Fluids 29, 2893 (1986)]. The inadequacy of the simpler, and often used, nonconserving model is illustrated. Comparisons are established with recent collisional studies of ion acoustic waves [V. Yu. Bychenkov, J. Myatt, W. Rozmus, and V. T. Tikhonchuk, Phys. Plasmas 1, 2419 (1994)] and electron plasma waves [C. S. Ng, A. Bhattacharjee, and F. Skiff, Phys. Rev. Lett. 83, 1974 (1999)]. A connection is also established with contemporary studies of condensed matter and quantum liquids [K. Morawetz and U. Fuhrmann, Phys. Rev. E 61, 2272 (2000); 62, 4382 (2000)]. A useful empirical fit is found that corrects the Braginskii susceptibility to incorporate the kinetic behavior associated with the Krook kinetic susceptibility.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available