3.8 Article

A Ca2+/CaM-dependent kinase from pea is stress regulated and in vitro phosphorylates a protein that binds to AtCaM5 promoter

Journal

EUROPEAN JOURNAL OF BIOCHEMISTRY
Volume 269, Issue 13, Pages 3193-3204

Publisher

WILEY
DOI: 10.1046/j.1432-1033.2002.02994.x

Keywords

calmodulin; DNA-protein interaction; plant protein kinase; protein phosphorylation; stress signaling

Ask authors/readers for more resources

An immuno-homologue of maize Ca2+ /calmodulin (CaM)-dependent protein kinase with a molecular mass of 72 kDa was identified in pea. The pea kinase (PsCCaMK) was upregulated in roots in response to low temperature and increased salinity. Exogenous Ca2+ application increased the kinase level and the response was faster than that obtained following stress application. Low temperature-mediated, but not salinity-mediated stress kinase increase was inhibited by the application of EGTA and W7, a CaM inhibitor. The purification of PsCCaMK using immuno-affinity chromatography resulted in coelution of the kinase with another polypeptide of molecular mass 40 kDa (p40). Western blot revealed the presence of PsCCaMK in nuclear protein extracts and was found to phosphorylate p40 in vitro . Gel mobility shift and South-Western analysis showed that p40 is a DNA-binding protein and it interacted specifically with one of the cis acting elements of the Arabidopsis CaM5 gene (AtCaM5 ) promoter. The binding of p40 to the specific elements in the AtCaM5 promoter was dependent of its dephosphorylated state. Our results suggest that p40 could be an upstream signal component of the stress responses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available