4.8 Article

Endocannabinoids as physiological regulators of colonic propulsion in mice

Journal

GASTROENTEROLOGY
Volume 123, Issue 1, Pages 227-234

Publisher

W B SAUNDERS CO
DOI: 10.1053/gast.2002.34242

Keywords

-

Funding

  1. NIDA NIH HHS [DA-10200] Funding Source: Medline

Ask authors/readers for more resources

Background & Aims: Activation of enteric cannabinoid CB1 receptors inhibits motility in the small intestine; however, it is not known whether endogenous cannabinoids (anandamide and 2-arachidonylglycerol) play a physiologic role in regulating intestinal motility. In the present study, we investigated the possible involvement of endocannabinoids in regulating intestinal propulsion in the mouse colon in vivo. Methods: Intestinal motility was studied measuring the expulsion of a glass bead inserted into the distal colon; endocannabinold levels were measured by isotope-dilution gas chromatography-mass spectrometry; anandamide amidohydrolase activity was measured by specific enzyme assays. CB1. receptors were localized by immunohistochemistry. Results: Anandamide, WIN 55,212-2, cannabinol (nonselective cannabinoid agonists), and ACEA (a selective CB1 agonist) inhibited colonic propulsion; this effect was counteracted by SR141716A, a CB1. receptor antagonist. Administered alone, SR141716A increased motility, whereas the inhibitor of anandamide cellular reuptake, VDM11, decreased motility. High amounts of 2-arachidonylglycerol and particularly anandamide were found in the colon, together with a high activity of anandamide amidohydrolase. CB1. receptor immunoreactivity was colocalized to a subpopulation of choline acetyltransferase-immunoreactive neurons and fiber bundles in the myenteric plexus. Conclusions: We conclude that endocannabinoids acting on myenteric CB., receptors tonically inhibit colonic propulsion in mice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available